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The problem of restoring a class of continuous, finite random objects degraded by 
finite space invariant PSF and additive noise is considered. For infinite images this problem 
is solved easily via Fourier domain Wiener filtering. For 6nite intervals, this solution is no 
longer valid. Here we show that a moditication of the image data by the boundary observa- 
tions gives a solution of the Wiener filtering problem in such a way that the restored object 
is obtained exactly in terms of a Fourier series expansion which can be implemented in 
practice via a fast Fourier transform algorithm. Examples of two-dimensional images are 
given. 

This paper considers the problem of Wiener filtering of images of finite random 
objects degraded by a finite space invariant point spread function (PSF) and additive 
white noise. Let U(X) represent a sample function of a class of wide sense stationary 
random objects, i.e., 

m44) = l-5 0) 

E{u(x) u(x’)} = r(x - x’). (2) 

Further assume that U(X) is defined on a finite interval [--L, L], so that Eqs. (1) and (2) 
are valid only for -L < X, x’ G L. Without loss of generality, we will assume that 
p = 0 and we will specialize (2) for the class of objects whose autocorrelation 
function is given by 

r(x - x’) = e-“i”-“‘l, -L < x, x’ G L. (3) 

If h(x) is a symmetric, spatially invariant PSF whose range does not exceed 2L, i.e., 

h(x) = A(--x), -L,(-L,<x<L,<L, (4) 

h(x) = 0, 1x1 >Ll, (5) 

* A preliminary version of this paper was presented at the OSA Annual Meeting, Boston, October 
1975. 
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168 JAIN AND PADGUG 

then the observed image is given by 

Y(X) = j” h(x - x’) u(x’) dx’ + w(x), 
-cc (6) 

where w(x) is zero mean white Gaussian noise with variance ua2. Since U(X) is defined 
in a finite interval, Eq. (6) can be written as 

y(x) = j-1 h(x - x’) u(x’) dx’ + w(x), -2L < x < 2L, (74 

= w(x), I x I > 2L. (7b) 

From (7a) it is noted that since the range of h(x) can be as much as [-L, L], y(x) is 
defined over [-2L, 2L]. In Eq. (7b), w(x) may be interpreted as the object background 
and is assumed to be a white noise random field uncorrelated with the objects, i.e., 

E{u(x) w(x’)} = 0 kc, x’. (8) 

THE COMPLEXITIES OF WIENER FILTERING 

The filtering problem is to find the best mean square estimate of U(X) given the 
observations y(x) over the finite interval [-2L, 2L]. The solution of this problem is 
quite straightforward via Fourier theory when u(x) is defined as a stationary object 
over the infinite interval (- co, co). In fact, for L = co, one solves the Wiener filtering 
problem associated with (6) which gives the filtered estimate u*(x) as the Fourier 
inverse of U*(o) given by [4] 

where Y(w), H(w) are the Fourier transforms of y(x), h(x), respectively, and @JoJ) 
is the power spectrum of u(x). The Wiener filter equation (9) is obtained by first 
writing the Fourier transform of (6) as 

Y(w) = H(w) U(w) + W(w) (10) 

and noting that U(w) and W(o) are uncorrelated and that each is an uncorrelated 
process in the frequency domain, i.e., 

E{U(w) U(o’)} = CD,(w) S(w - co’), (11) 
E(W(w) W(co’)} = un2S(f.LJ - a’), (12) 
E(U(f.0) W(d)} = 0. (13) 

Let Q,(W) denote the power spectral density of the error, u(x) - u*(x). Assuming a 
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Gaussian distribution of the random object u(x), we can treat Y(w) as independent 
for each different w  and write V*(w) = F(W) Y(W) for each W, as a scalar filter 
equation. The F(W) is determined such that J @, do is minimized. Equation (9) is 
then found to be the resulting solution. However, when u(x) is defined on a finite 
interval [--L, L], Eq. (9) no longer gives the optimum estimate. This is because Eq. (11) 
no longer holds and the Y(W) are correlated for different w  values. 

Over a finite interval it is possible to find an expansion for u(x) in the form 

44 = f w&(x>, -L<x<L, (14) 
i=O 

such that (k} is a set of complete orthonormal (CON) functions over [-L, L] and 
the coefficients ui are uncorrelated, viz., 

where 

E(u& = A& , (15) 

Uf = s L u(x) #i(X) dx. (16) 
-L 

This expansion is called the Karhunen-Loeve expansion [l], and the {d} are given as 
the solutions of the eigenvalue problem. 

I L r(x - x’) +i(x’) dx’ = X,cj$(x). (17) 
-L 

Since {&> are complete and orthonormal we can expand h(x), in terms of #Q over 
[-L, L], to give 

44 = 2 kM4 -L<x<L, 
i=O 

(18) 

hi = J-1 h(x) Mx) dx. (19) 

Unfortunately y(x) is defined over [-2L, 2L], and since 4i(x) are not necessarily 
complete and orthogonal over [-2L, 2L], we cannot expand y(x) in terms of $i(x). 
Even if we try to expand v(x) over [-L, L] we have difficulty because the expansion 
of h(x) in (18) is valid only when its argument x is in the [-L, L] interval. However, 
in (7a) the argument of h(x - x’) has a range of [-2L, 2L] when x and x’ are in 
[-L, L]. Hence a possible solution of (7a) is to find the CON functions $i as solution 
of the following equations. 

s L r(x - x’) 4&x’) dx’ = X+,(x), -L <x<L, (20) 
-L 
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i 2L h(x - x’) 4((x) d,r’ = y&(x). (21) 
-2L 

This is called a doubly orthogonal expansion, since the functions & must simul- 
taneously solve the two different eigenvalue problems. It is obvious that if L = CQ, 
$(x) = e&j”” are two solutions and h and y are the Fourier transforms of r(x) and 
h(x), respectively. 

In general, the solutions of such equations (if they exist) are not available in 
closed form and have to be computed numerically. Even in the special case when 
r(x - x’) is given by (3) and h(x) is given in (4) and (5), a closed form solution for 4(x) 
is unknown. And, even if h(x - x’) = r(x - x’) the simultaneous solution of (20), 
(21) is not the same as that of (20) alone, because the interval of x in (21) is (-2L, 2L) 
and is different from that in (20). For example, it is known that when r satisfies Eq. (3), 
the solution of (20) alone is given by [2] 

1 
$Ux) = LlP(1 + (sin 2b,L)/2(jdL) ‘OS bix’ i = 1, 3, 5 ,...) 

(22) 
2, 4, 6,. . . , 

(23) 

(24) 

1 = LlP(1 - (sin 2biL)/26J,) sin bix’ i 
for -L < x < L and 

hi = 2ar 
a2 + bi2 ’ 

i = 1, 2, 3,.. ., 

where 6, are solutions of the transcendental equation 

(tan biL + b&)(tan biL - a/bJ = 0. 

It can be checked that the CON functions {4i( x )} are not solutions of Eq. (21) even 
when h(x - x’) = r(x - x’), i.e., of the integral equation 

s 

2L 
e-[112-r’I$(x’) dx’ = p$(x), -2L < x < 2L. (25) 

-2L 

Further, it is to be noted that if h(x - x’) = 6(x - x’), solutions of (20) are also 
solutions of (21), which is to say that if the object is degraded by noise alone, then the 
Karhunen-Loeve expansion of the object can be used to expand the image as well as 
the noise w(x). Thus (if h(x - x’) = 6(x - x’)), 

z(x) = c Zi#i(X>, z = u, w, Y, (26) 
I 

s 

L 

zj = 44 b(x) dx, Zi = Ui 9 Wi 3 Yi9 (27) 
-L 
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and 

y, = Ui + M’i * (28) 

Since di are solutions of (20) and w(x) is white noise, it is easy to check that both 
(ui} and {wi} are uncorrelated sequences, and the Wiener filter is given by 

and the best mean square estimate of u(x) is reconstructed as 

u*(x) = f u”&(x). (30) 
i=O 

It is noted that even for this simple problem (PSF = delta function) computa- 
tionally the transcendental equation of (24) is to be solved and the computations in (27) 
and (30) each require NM multiplications if N discrete steps are chosen in evaluating 
the integral (27) and M terms are chosen in the sines summation of (30). The compu- 
tational complexity of solving the original filtering problem via numerical solutions 
of (20) and (21) becomes even greater. 

In this paper we show that if there is no uncertainty at the boundary points of the 
object (i.e., u(--L) and u(L) are given), the equations for the observations y(x) and for 
the Karhunen-Loeve expansion eigenvalue problem can be modified by this boundary 
information in such a way that the Wiener filtering problem is solved by a set of 
harmonic sinusoidal functions leading to a fast computational implementation of the 
filter equations. 

RANDOM OBJECT STATISTICS WITH KNOWN BOUNDARIES 

Suppose the two boundary values of the object, viz., u(--L), u(L), are given. Then 
we define a new function a(x) as 

22(x) = u(x) - u(x) u(-L) - b(x) u(L), (31) 

where a(x) and b(x) are weights such that the expected square value E{@(x))~} for 
any x in [--L, L] is minimized. The implication here is that a(x), b(x) represent the 
weight of the boundary information in the random function u(x). The quantity 

a(x) UC---L) + b(x) u(L) 4 UdX) (32) 

may be interpreted as the “boundary information” or “Boundary Response 
Information” in u(x), and Eq. (31) is rewritten as 

u(x) = a(x) + z&(x). (33) 
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Therefore, the random process u(x) is decomposed as a sum of two random processes 
d(x) and Us, where ub(x) contains only boundary information and is also the best 
mean square estimate of u(x) if the boundary information alone is given. The weights 
a(x) and b(x) are obtained as 

u(x) = 
sinh ol(L - x) 

sinh 2aL ’ 

b(x) = 
sinh a(L + x) 

sinh 2olL f (35) 

The derivation of a(x) and b(x) is not important for the restoration problem con- 
sidered here and is, therefore, omitted for the sake of brevity. Equation (31) could 
just be taken as a definition of a modified object obtained from the original object 
and its boundary values. The mean and covariance functions of the modified object 
are obtained directly from (31), (34), and (35) as 

E{zi(x)} = 0, 

E{fi(x) 22(x’)} = P(x, x’) 
(36) 

= e-cip-2’1 - e-oL 
[ 

cash cxx 
cash aL cash sd + 

sinh 01x 
sinh olL 

sinh ax’ . 1 
It is observed that the process u(x) is no longer stationary. Solution of the integral 
equation (20) with this modified kernel proceeds in a manner identical to that for the 
unmodified kernel [2]. The solutions are now harmonic sinusoids that form a CON 
set of basis functions and are given in closed form as 

&x) = (-&)I” cos & x, i = 1, 3, 5 ,..., 

-L<x<L, (37) 
1 .irr 

= t-1 
l/2 

L ml 2L x, i = 2, 4, 6 ,..., 

Ai = 2a 
a2 + (i7r/2L)2 ’ 

i = 1, 2, 3 ,... . (38) 

Note here that the eigenfunctions &(x), in addition to being harmonics, depend only 
on L and are independent of 01. The fact that (&( x )} are a CON set of eigenfunctions 
of T^(x, x’) can be verified by converting the integral equation 

CL r(x, x’) r&x’) dx’ = iii&(X) 
J-L 

into a second-order ordinary differential equation by a method similar to that of 
VanTrees [2], and (37) and (38) are solutions of that equation. These functions are 
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FIG. 1. Eigenfunctions &(x). 

equivalent to those obtained by Jain [3, 51 for the discrete case except for a shift in 
origin. (Fig. 1) 

The process a(x) can now be expanded by its Karhunen-Loeve expansion 

i(x) = c z&&x), z 
& = s 

L (40) 
C(x) &x) dx. 

-L 

Using (36) and (37) in the latter equation, one may easily see that 

E{i@j> = Ai ) i=j, 

= 0, i #.A (41) 

which, of course, is also the property of a Karhunen-Loeve expansion. 
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The functions &x) are much simpler to generate, and the computations involved 
in (39) and (40) are greatly reduced because they are related to the Fourier series and 
a fast Fourier transform [7] algorithm can be utilized if these computations are per- 
formed on a digital computer. If (39) and (40) are to be implemented by analog 
signal generators and correlators, the implementation is greatly simplified, since only 
harmonic sinusoids, independent of the object statistical parameter (Y, need be 
generated. 

From (37) it is seen that the functions &x) are not the Fourier series sinusoids 
over the interval [--L, L]. In fact, the Fourier series is given in terms of the pair of 
functions 

&(x) = sin 9, 
i2rx 

COS 7, i = 0, 1, 2 ,..., --I,<x<l, 

over any interval (--I, I). Thus, for I = L, I,&(X) and C&(X) are different. However, if 
I = 2L, then the functions C&(X) extended in the region [-2L, 2L) form a subset of 
the Fourier series functions Z,&(X). This means we can use $i(X) over [-L, L] to 
expand the modified object and use the Fourier series to expand the PSF h(x) as well as 
the modified observations p(x) over [-2L, 2L]. It is then seen that only a partial set 
of the Fourier expansion of g(x) is sufficient for the restoration problem. 

OPTIMUM RESTORING FILTER FOR SYMMETRIC SPACE INVARIANT PSF 

Suppose now that a sample function of U(X) is blurred by a known symmetric 
space-limited PSF h(x) and corrupted by zero mean white noise w(x) with variance un2. 
The output v(x) is observed. 

~(-4 = /-; 43 h(x - PI 4 + 44, -oO<X<d. 

With the boundary values u( - L), u(L) given, modify this observation as 

(42) 

I = Y(X) - sinh12rrL [S_m h(x - /I)[sinh ol(L - ,8) u(-L) 
co 

+ sinh 4L + B) u(L)] da] 

zzz 
I m WTlh(x - ,4 dP + +) --m 

/ 

I L W) 4x - PI 43 + w(x), Ix I < 2L, 
-L = 

w(x), I x I > 2L, 
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where C(x) is the modified random process of (31). Since the PSF, h(x), is assumed 
to be narrower than 2L, i.e., h(x) = 0, 1 x 1 > L. It is expanded in a Fourier series 
over the interval [-2L, 2L], since j(x) exists over [-2L, 2L]. 

h(x) = & jf hj cos g x, -3L < x < 3L, 
z=O 

(44) 

hi = j-:2; h(x) cos e x dx = s_: h(x) cos g x dx. 

Note here that the series expansion of h(x) is valid over the interval [-3L, 3L] 
even though the function was expanded over [-2L, 2L]. Equation (44) describes a 
function which is periodic with period 4L and which is 0 in the intervals [-2L, -L] 
and [L, 2L]. Therefore, it must be 0 over [-3L, -2L] and [2L, 3L]. This allows us 
to substitute (44) for h(x - p) in (43), w  h ere the interval of x - /I is [ -3L, 3L]. 

cos & (x - j3) dfl + w(x) 

+ &- .f hisingxSL 
1-O -L 

z?(p) sin 5 /? dfi + w(x), -2L < x < 2L. 

(45) 

The process can now be decomposed by correlating both sides of (45) with harmonic 
sinusoids, which gives 

Pi = (t)“” I:2lg(X) COS 5 X dx = h& + pi, i = 1, 3, 5 ,..., 

(46) 

. 9(x) sin g x dx = hilit + wi, i = 2, 4, 6 ,..., 

where the Of are defined in (40). The wi are given by 

wj = (+-)1’2j-~S~w(x)cos~xdx, i = I, 3, 5 ,..., 

(47) 

. w(x) sin E x dx, i = 2, 4, 6,.. ., 
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with 
E{w,} = 0, E{WiWj) = an28g . (48) 

Since hi are deterministic and both {&} and (wi} are uncorrelated sequences, we can 
derive a Wiener filter for each pi independently. 

The Wiener filter minimum mean square estimates of tii are given by 

An inverse transform can now be applied to construct an estimate of a(x), 

a*(x) = f 22”&(x), 
i=O 

(49) 

With G*(x) obtained from (50), the estimate u*(x) of the original object U(X) is then 
obtained by adding the boundary-response term of (32), i.e., 

u*(x) = d*(x) + u(x) 24(-L) + b(x) u(L). (51) 

It is seen from (18) that the {wi} are zero mean random numbers. If w(x) extends only 
over the interval E---L, L] or fills the entire interval [-2L, 2L] then they are also 
uncorrelated. In some cases the noise may be present only over the interval 
[--L - d, L + d] where d is the half-width of the PSF. With the +i(X) as given in (9): 

s L+A 
E(w*wJ = an2 -L-A dd4 949 dx 

= us2 + 2un2 ILL+’ &“(x) dx, i =j, 

s LtA 
= 2a,2 A(x) d&4 dx, i + j even, L 

= 0, i + j odd. 

In such cases the filter equations derived here become approximations to the true 
Wiener filter, which has to be obtained in terms of a set of doubly orthogonal complete 
functions, as explained previously. 

Figures 2-5 display the results of this technique. Figure 2 is an image blurred by 
a known symmetric point spread function with no additive noise. Figure 3 is the 
restored image which is identical to the original unblurred image. Figure 4 is the 
blurred image with additive white Gaussian noise. The signal-to-noise ratio is about 
6 db. Figure 5 is the restored image. Note that the noise has been removed but the 
image appears blurred. This is due to the loss of high-frequency components due 
to filtering. 
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EXTENSIONS AND CONCLUSIONS 

The extension of the present approach to the cases where the PSF is spatially 
invariant, but nonsymmetric (e.g., in the case of motion blur), is also possible. The 
derivation for this extension is given in the Appendix. Extensions to the problems 
where PSF is a random function [8] (e.g., in astronomical speckle patterns) also seem 
possible. In conclusion, it was shown that the Wiener filter solution of the image 
restoration problem over a finite interval requires a doubly orthogonal set of basis 
functions which is difficult to obtain. However, if this problem is formulated via a 
boundary response decomposition of the object function and the image observations, 
then a fast implementation of the solution follows. Similar results are also possible 
for discrete objects. The derivation there is more complex and requires a special kind 
of factorization of the PSF represented by a matrix [S]. 

APPENDIX: FAST WIENER RESTORATION FOR NONSYMMETRIC FINITE PSF 

If the PSF is nonsymmetric, a similar expansion is possible. In this case (44) 
becomes 

h(x) = & 2 (h& . 
i=O 

cos g x + hSi sin G x 
1 
, 

hci = j-;z; h(x) cos $ x dx, 

hSi = [:zl h(x) sin g x dx. 

-2L < x < 2L, 

(52) 

Substituting into (43): 

where 

+ (h,& + h,&) sin g x] + w(x), -2L < x < 2L, (53) 
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Correlating the observed signal g(x) with harmonic sinusoids yields 

jci = (g2 Jy2; “( > J’ X COS g X dX = hcjtiij - hsjC,j f W,j 3 

$sj = (--&)“” IT21 j(x) sin & x dx = hcjziSj + hSi& + wsj , 

wcj = (+)l’2/;2;w(x)cos&xdx, 
(54) 

M’sj = (t)1ir~~2~w(x)sin~xdx, 

and finally . . . . 

Wlj = hcjM?cj + hajwaj ) W’2j = 

h,jw,gj - h,iw,j 
hEj + A”,, h”,, + h”,, - 

Only one of these values is needed for the eigenfunction expansion: the cosine term 
if j is odd or the sine term if j is even. The noise terms will be exactly uncorrelated 
for allj except when noise and observation intervals are different. (See Eq. (51).) 

OnceFagain both {Zlj} and {Z2j} are uncorrelated sequences. 

Zj = Zlj ) j = 1, 3, 5 ,..., 

= z2j 9 j = 2, 4, 6 ,..., 

(56) 

Again the inverse transform gives d*(x) as in (50) and u*(x) as in (51). 
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